[python] python virtual environment construction & GPU environment

GPU/python environment configuration and verification.

(1) Install NVIDIA GPU driver and CUDA toolkit for GPU accelerated instances: https://support.huaweicloud.com/usermanual-ecs/zh-cn_topic_0149470468.html#ZH-CN_TOPIC_0149470468__section1034245773916

(2) Huawei Cloud Linux Server Deployment TensorFlow-gpu Guide:https://www.cnblogs.com/zxyza/p/10535939.html

(3) Install Anaconda3 on Ubuntu: https://www.jianshu.com/p/d9fb4e65483c

(4) Add environment variables: vim ~/.bashrc

export PATH="/root/anaconda3/bin:$PATH"export PATH=/usr/local/cuda/bin{PATH:+:{PATH}}export LD_LIBRARY_PATH=/usr/local/cuda/lib64{LD_LIBRARY_PATH:+:{LD_LIBRARY_PATH}}export CUDA_HOME=/usr/local/cuda

(5)source ~/.bashrc

(6) Create a virtual environment:

conda create -n py37 python=3.7

Enter the environment

source activate py37

conda activate py37

Exit the environment

source deactivate

conda deactivate

(7)source activate py37

(8) Install tensorflow-gpu: pip install tensorflow-gpu==1.13.1 -i https://pypi.tuna.tsinghua.edu.cn/simple

(9) Test:

import tensorflow as tf

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

print('GPU>>>>>>', tf.test.is_gpu_available())

a = tf.constant(2.0)

b = tf.constant(4.0)

print(a + b)

(10) result:

GPU>>>>>> True

Tensor("add:0", shape=(), dtype=float32)

(11) Different versions of torch installation:

conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0

conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.0

conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1

The above command is too slow to install the wife directly, you can speed up the download by changing the conda source.

# Modify conda configuration
vim .condarc

# Add Tsinghua source in configuration clock
channels:- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
 - default
show_channel_urls:true

# Install pytorch and the corresponding version of cudatoolkit
conda install pytorch=1.4.0 torchvision cudatoolkit=10.1

Recommended Posts

[python] python virtual environment construction & GPU environment
Python virtual environment: Ubuntu16.04
Centos7 deploys python3 virtual environment
Install Python virtual environment on Ubuntu 18.04
Detailed usage of Python virtual environment venv
GPU programming (1): CUDA8.0 environment construction under Ubuntu
Python: Virtual Environment-Ubuntu16.04
Ubuntu20.04 install Python3 virtual environment tutorial detailed explanation
ubuntu16.04 deploy GPU environment
Hadoop environment construction (centos7)
How to create a Python virtual environment in Ubuntu 14.04
Configure CentOS7 GPU environment
Python introduction and environment installation
Install python environment under Linux
ubuntu build python development environment
ubuntu offline installation python environment